8,012 research outputs found

    Carbon balance of a tropical savanna of northern Australia

    Full text link
    Through estimations of above- and below-ground standing biomass, annual biomass increment, fine root production and turnover, litterfall, canopy respiration and total soil CO2 efflux, a carbon balance on seasonal and yearly time-scales is developed for a Eucalypt open-forest savanna in northern Australia. This carbon balance is compared to estimates of carbon fluxes derived from eddy covariance measurements conducted at the same site. The total carbon (C) stock of the savanna was 204±53 ton C ha -1, with approximately 84% below-ground and 16% above-ground. Soil organic carbon content (0-1 m) was 151±33 ton C ha-1, accounting for about 74% of the total carbon content in the ecosystem. Vegetation biomass was 53±20 ton C ha-1, 39% of which was found in the root component and 61% in above-ground components (trees, shrubs, grasses). Annual gross primary production was 20.8 ton C ha-1, of which 27% occurred in above-ground components and 73% below-ground components. Net primary production was 11 ton C ha-1 year-1, of which 8.0 ton C ha-1 (73%) was contributed by below-ground net primary production and 3.0 ton C ha-1 (27%) by above-ground net primary production. Annual soil carbon efflux was 14.3 ton C ha-1 year -1. Approximately three-quarters of the carbon flux (above-ground, below-ground and total ecosystem) occur during the 5-6 months of the wet season. This savanna site is a carbon sink during the wet season, but becomes a weak source during the dry season. Annual net ecosystem production was 3.8 ton C ha-1 year-1

    Soil organic carbon content at a range of north Australian tropical savannas with contrasting site histories

    Full text link
    Soils play an important role in the global carbon cycle, and can be major source or sink of CO2 depending upon land use, vegetation type and soil management practices. Natural and human impact on soil carbon concentration and storage is poorly understood in native north Australian savanna, yet this represents the largest carbon store in the ecosystem. To gain understanding of possible management impacts on this carbon pool, soil organic carbon (SOC) of the top 1m of red earth sands and sandy loams common in the region was sampled at 5 sites with different vegetation cover and site history (fire regime and tree removal). SOC was high when compared to other published values for savannas and was more comparable with dry-deciduous tropical forests. Sites sampled in this study represent high rainfall savannas of northern Australia (> 1700 mm annual rainfall) that feature frequent burning (2 in 3 years or more frequent) and a cycle of annual re-growth of tall C4 grasses that dominate the savanna understorey. These factors may be responsible for the higher than expected SOC levels of the surface soils, despite high respiration rates. Medium term fire exclusion (15-20 years) at one of the sampled sites (Wildlife Park) dramatically reduced the grassy biomass of the understorey. This site had lower SOC levels when compared to the grass dominated and frequently burnt sites, which may be due to a reduction in detrital input to surface (0-30 cm) soil carbon pools. Exclusion of trees also had a significant impact on both the total amount and distribution of soil organic carbon, with tree removal reducing observed SOC at depth (100 cm). Soil carbon content was higher in the wet season than that in the dry season, but this difference was not statistically significant. Our results indicated that annual cycle of grass growth and wildfire resulted in small carbon accumulation in the upper region of the soil, and removal of woody plants resulted in significant carbon losses to recalcitrant, deep soil horizons greater than 80 cm depth. © Springer 2005

    Seasonal patterns of fine-root productivity and turnover in a tropical savanna of northern Australia

    Get PDF
    Fine roots and their turnover represent a dynamic aspect of below-ground biomass (BGB) and nutrient capital in forest ecosystems, and account for a significant fraction of net primary productivity (NPP) (Cuevas 1995, Vogt et al. 1990). On a weight basis, coarse roots contribute more to total ecosystem biomass than fine roots, but they account for only a small portion of annual root production (Eamus et al. 2002). Despite the fact that fine roots may compose less than 2% of total ecosystem biomass, they may contribute up to 40% of total ecosystem production (Vogt et al. 1990). Therefore, estimates of root production, like estimates of root biomass, should differentiate between coarse- and fine-root production

    Root biomass and root fractal analyses of an open Eucalyptus forest in a savanna of north Australia

    Full text link
    Below-ground biomass of a Eucalyptus savanna forest was estimated following trenching to depths of 2 m around 16 mature trees in a tropical savanna of north Australia. Correlations among below-ground and various components of above-ground biomass were also investigated. In addition, root morphology was investigated by fractal analyses and a determination of an index of shallow-rootedness was undertaken. Total root biomass was 38.4 t ha-1, including 1 t ha-1 of fine roots. About 77-90% of total root biomass was found in the upper 0.5 m of soil. While fine-root biomass density was approximately constant (0.1 kg m-3) in the top soil, irrespective of distance from a tree stem, coarse-root biomass showed large variation with distance from the tree stem. Significant positive correlations among total root biomass, total above-ground biomass, diameter at breast height, leaf biomass and leaf area were obtained. It is likely that total root biomass can be reasonably accurately estimated from above-ground biomass and fine-root biomass from tree leaf area. We present equations that allow the prediction of below-ground biomass from above-ground measures of tree size. Root morphology of two evergreen and two deciduous species was compared by the use of three parameters. These were the fractal dimension (d), which describes root system complexity; a proportionality factor (a), which is the ratio of the cross-sectional area before and after branching; and two indices of shallow-rootedness (ISR). Roots were found to be amenable to fractal analyses. The proportionality factor was independent of root diameter (Dr) at any branching level in all tree species examined, indicating that branching patterns were similar across all root sizes. The fractal dimension (d) ranged from 1.15 to 1.36, indicating a relatively simple root structure. Mean d was significantly different between E. tetrodonta (evergreen) and T. ferdinandiana (deciduous); however, no significant differences were found among other pairs of species. Terminalia ferdinandiana had the highest ISR, while Planchonia careya (deciduous) had the lowest. In addition, differences in ISR between P careya and the other three species were significant, but not significant among E. miniata, E. tetrodonta and T. ferdinandiana. There were clear relationships among above-ground tree stem diameter at breast height, stem base diameter, and horizontal and vertical proximal root diameter. By the use of mean values of and stem diameter, we estimated the total cross-sectional area of root and root diameter-class distribution for each species studied

    The androgen receptor and signal-transduction pathways in hormone-refractory prostate cancer. Part 2: androgen-receptor cofactors and bypass pathways

    Get PDF
    Prostate cancer is the second leading cause of cancer related deaths in men from the western world. Treatment of prostate cancer has relied on androgen deprivation therapy for the past 50 years. Response rates are initially high (70-80%), however almost all patients develop androgen escape and subsequently die within 1-2 years. Unlike breast cancer, alternative approaches (chemotherapy and radiotherapy) do not increase survival time. The high rate of prostate cancer mortality is therefore strongly linked to both development of androgen escape and the lack of alternate therapies. AR mutations and amplifications can not explain all cases of androgen escape and post-translational modification of the AR has become an alternative theory. However recently it has been suggested that AR co-activators e.g. SRC-1 or pathways the bypass the AR (Ras/MAP kinase or PI3K/Akt) may stimulated prostate cancer progression independent of the AR. This review will focus on how AR coactivators may act to increase AR transactivation during sub-optimal DHT concentrations and also how signal transduction pathways may promote androgen escape via activation of transcription factors, e.g. AP-1, c-Myc and Myb, that induce cell proliferation or inhibit apoptosis

    Optically and electrically tunable graphene quantum dot–polyaniline composite films

    Get PDF
    Graphene quantum dot-polyaniline (PANI-GQD) composite films were synthesized by a chemical oxidation polymerization process. The optical properties of the PANI-GQD composite were studied by varying the mole concentration of PANI and the size of the GQDs. The Au/PANI-GQDs/ITO sandwich device was fabricated in order to investigate the transport properties of the composite. A stable hysteresis loop was observed in response to the applied voltage. By varying the PANI content and size of the GQDs, the area within the hysteresis loop and electrical conductance behavior of the device can be tuned in a controlled manner. Both the tunable luminescence and electrical hysteresis behavior are attributed to surface states of the GQDs. The PANI-GQD composite films are expected to find application in photonic devices.Department of Applied Physic

    A Global SU(5) F-theory model with Wilson line breaking

    Full text link
    We engineer compact SU(5) Grand Unified Theories in F-theory in which GUT-breaking is achieved by a discrete Wilson line. Because the internal gauge field is flat, these models avoid the high scale threshold corrections associated with hypercharge flux. Along the way, we exemplify the `local-to-global' approach in F-theory model building and demonstrate how the Tate divisor formalism can be used to address several challenges of extending local models to global ones. These include in particular the construction of G-fluxes that extend non-inherited bundles and the engineering of U(1) symmetries. We go beyond chirality computations and determine the precise (charged) massless spectrum, finding exactly three families of quarks and leptons but excessive doublet and/or triplet pairs in the Higgs sector (depending on the example) and vector-like exotics descending from the adjoint of SU(5)_{GUT}. Understanding why vector-like pairs persist in the Higgs sector without an obvious symmetry to protect them may shed light on new solutions to the mu problem in F-theory GUTs.Comment: 95 pages (71 pages + 1 Appendix); v2 references added, minor correction

    Demonstration of astrocytes in cultured amniotic fluid cells of three cases with neural-tube defect

    Get PDF
    We have investigated the origin of rapidly adhering (RA) cells in three cases of neural tube defects (two anencephali, one encephalocele). We were able to demonstrate the presence of glial fibrillary acidic (GFA) protein in variable percentages (4–80%) of RA cells cultured for 4–6 days by use of indirect immunofluorescence with GFA antiserum. Cells cultured from amniotic fluids of normal pregnancies and fetal fibroblasts were completely GFA protein negative. GFA protein is well established as a highly specific marker for astrocytes. Demonstration of astrocytes may prove to be a criterion of high diagnostic value for neural tube defects. The percentage of astrocytes decreased with increasing culture time, while the percentage of fibronectin positive cells increased both in amniotic fluid cell cultures from neural tube defects and normal pregnancies

    Clinical guidelines for the management of craniofacial fibrous dysplasia

    Get PDF
    Fibrous dysplasia (FD) is a non-malignant condition caused by post-zygotic, activating mutations of the GNAS gene that results in inhibition of the differentiation and proliferation of bone-forming stromal cells and leads to the replacement of normal bone and marrow by fibrous tissue and woven bone. The phenotype is variable and may be isolated to a single skeletal site or multiple sites and sometimes is associated with extraskeletal manifestations in the skin and/or endocrine organs (McCune-Albright syndrome). The clinical behavior and progression of FD may also vary, thereby making the management of this condition difficult with few established clinical guidelines. This paper provides a clinically-focused comprehensive description of craniofacial FD, its natural progression, the components of the diagnostic evaluation and the multi-disciplinary management, and considerations for future research
    corecore